Exercise and brain function

- Largest effect on executive control:
 - Memory
 - Planning
 - Schesfuling
 - Multi-tasking
 - Dealing with ambiguity

Integration, planning, decision making, memory

Overall brain functioning

activity

Sensory input

What might be happening?

BDNF-mediated improvements

- BDNF: neuro-protective factor capable of sustaining neuron wability.
- Looking at servory and motor areas
 - Found changes in hippocampus
 - Leaving and memory (ALZ target)
- Ex BDNF (animal)
 - Less cortical atrophy
 - Improved cortical function

Causes of exercise/ Cognition changes

(Cotman & Engesser-Cesar, 2002)

BDNF mediated improvements

 Long term effects: - Plasticity C. - Neuro-protective - Improved Searning Anti dep.+ Exercise - Resistance to stroke 300% Depression Anti dep. Exercise - Compared to control 120% 200% Causes of exercise/ Cognition changes

Depression Reduction & Social Stimulation

changes

Blood flow changes

- Blood flow changes do not occur globally across all regions of the brain
- Ex induced correspondent blood flow goes to localized preas of brain
 - Loccolotion, equilibrium, CR control and hippocampus
- May induce angiogenesis

Causes of exercise/ Cognition changes

Pontifex et al, 2008

What sort of exercise?

- Most research has looked at aerobic exercise.
- What about other forms of physical activity?
- Issue: Are the cognitive tests currently used sensitive to changes from RT, mobility, mixed exercise modes?

Enriched environment

- PA in enriched environments deceased cognitive impairments (rats)
- More active ifestyle

more enriched environment

less likely to develop ALZ

Is exercise a "rich environment"?

Marshall McLuhan (1967, The Medium is the Massage)

- HOT media: e.g. Fin
 enhances one sirgle sense (vision)
 not much effen needed
- COOL magia: e.g. Radio
 - much more conscious participation to extract value.
 - more effort to determine meaning

Marshall McLuhan-ish (modified and proposed)

- HOT exercise: walking
 enhance some parts of the brain
 - a person does not need to exert much thought into completing exercise
- - more mental effort on the part of exerciser

 Cognitive (non active) training in healthy older individuals produces strong and persistent protective effects on longitudinal neuropsychological performance

(7 RCTs with >3 month follow up, Vela & Sachev, 2009)

- Can Core physical exercise contribute:
 - Develop mental reserve before loss
 - Combine Physical and Cognitive training?
 - "Exercise" all parts of the brain
 - Stretch brain to its limit to control body

A "CooL" exercise program

- Novel exercise
- Enriched environment
- Variety of challenges
- Pusk comfort zone
- Multi tasking
- Integration of whole brain

Exercise for older adults must maintain mobility and enhance reserve

Aerobic training >55 y.o. (11 RCTs)

- Largest effect:
 - motor function and auditory attention
- Moderate effcor:
 - cognitive speed and visual attention
- Most studies: no significant results.

"Clinicians and scientists in the field of neuropsychology should seek mutual agreement on a smaller battery of cognitive tests to use, in order to render research on cognition critically relevant and transparent and heighten the reproducibility of results for future research"

Kramer, Erickson, & Colcombe (2006)

Resistance training

- Strength program RCT (bands at home)
 - No sig difference between exercise and control groups BUT (within the strength group)
 - >strength gain assoc w/Simprovement in memory
 - 3 and 6 month test mproved

Sample tests

Stroop Color test (Say number that corresponds to color)

1 = RED 2 = YELLOW 3 = BLUE 4 = GREEN

Processing speed (executive function)

Stroop Test (Jensen & Rohwer, 1966, Stroop, 1935)

Stroop Color test (Select color #, not the word)

Interference test (executive function)

Stroop Test (Jensen & Rohwer, 1966, Stroop, 1935)

Attention: Digit span test

Backwards and forwards. Words read at 1 second intervals

Resistance Training vs BT

1x or 2x week resistance vs balance/tone

- BT ROM, core strength, ta stances.
- "No evidence that (B: xercises improve cog function"
- Exec function (Stroop) improved more in RT than BT
- Task performance (Trail) improved in RT not in BT
- Brain volume decreased in RT but not BT .

Change pre/post	Stroop	Trail	Dig span	1RM	Power	Brain volume	Adverse events
RT 2x	5	11	47	70	13%	43%	11%
RT 1x	6	7.3	.06	44	-8%	32%	29%
BT	.26 *	9	64	18	-16%	0.0%*	9%

Acute ex (RT or CV) College aged

- 30 min exercise Rendemized repeated measures
 - RT 80% 1RM, Aer Cic 60-70% VO_{2max}, Rest
- 30 min resistance NSCA VS 30 min aerobic ACSM
- 21 u/300d.
- Test: Sternberg modified. Computer response.

GBNTM ?? t ??

XJDWRPL XSWBHLRP ??? h ??? ???? r ????

Pontifex et al, 2008

Change in Stroop reaction time (across difficulty levels)

Larger reduction in RT occurred after aerobic ex for more difficult task

Pontifex et al, 2008

The old brain is different

- Brain **improves** with age (wisdom)
 - Accumulated knowledge
 - Expert skills
 - Emotiona' Savvy

- Higher order decision making unchanged
- Decision making slows
 - Fewer connections
 - Blockages to blood suppy
 - Decreased neurotransmitters
- Short term (working memory) declines

Multi tasking options in ex

- Walkie talkie test
- Balance training with counting
- Combining movements
 - Flexion/contension, abduction/adduction
 - Rcalons w/linear moves and directions
- Integrating both sides of body
- Crossing the midline
 - Childhood suppression (9 y.o)
 - Older adults take much longer to plan and do

Ref: Lombardi, J.A., Surburg, P., & Koceja, D. (2000). Age differences and changes in midline-crossing inhibition in the lower Extremities. J. Geron MED SCI 55A(5) M293-M298

Best practice:

- CV RT BT
- Social interaction
- Enriched ecoironment
- Involve all parts of the brain:
 - Cognitive involvement
 - Reverse letter Tai Chi
 - Crossing midline
 - Figure 8
 - Combine movements

Consider

Stimulating environment Social stimulation Challenge all geos of the brain Coordination Fun

Until the research is in consider McLuhan's cool stimulation to involve full person in exercise

EVA DVD

- Exercise from you brain to your toes
- Enquiries:
 - -email Pmacfarl@niu.edu
 - Subject line: Eva is cool.
- DVD includes routines from a seated or standing position.
- Cost (includes mail in US):
 - -1 @ \$ 20
 - Each additional to same address \$ 15.

References

- Barella, L.A, Etnier, J.L., & Chang, Y-K. (2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy Older adults. JAPA 18:87-98.
- Colcombe, s & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science: a Journal of the American Psychological Society, 14:125-130.
- Geda, Y.E., Toberts, R.O., Knopman, D.S., et al (2010). Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol. 67(1):80-86.
- Khatri, P., Blumenthal, J.A., Babyak, M.A., Craighead, W.E., et al. (2001). Effects of exercise training on cognitive functioning among depressed older men and women. JAPA, 9:43-57.
- Lauren, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol, 58:498-504.
- Lindenmuth, G. F & Moose. (1990), B. Am J. Improving cog abilities of eld Alz patients w/intense ex therapy.Alz Care Rel Dis & res, 5:31.
- Liu-Ambrose, T, Nagamatsu, L.S., Graf, P., Beattie, B.L., Ashe, M.C., Handy, T.C. (2010). Resistance training and executive functions: a 12 month RCT. Arch Intern Med, 170(2):170-8.
- Lochbaum, M.R., Karoly, P, & Landers, D.M. (2002). Evidence for the importance of openness to experience on performance fo a fluid intelligence task by physically active and inactive participants. RQES, 73 (4): 437-444.
- Moul, J.L., Goldman, B., & warren, B. (1995). Physical activity and cognitive performance in the older population. JAPA, 3:135-145.
- Netz, Y., Argov, E., & Inbar, O. (2009). Fitness's moderation of the facilitative effect of acute exercise on cognitive flexibility in older women. JAPA, 17: 154-166.
- Valenzuela, M., &Sachdev, P. (2009). Can cognitive exercise prvent the onset of dementia? Systematic review of RCT with longitudinal follow up. Am. J. Geriatr Psychiatry 17(3):179-187.
- Vance, D.E., Wadley, V.G., Ball, K., Roenker, D.L., & Rizzo, M. (2005). The effects of physical activity and sedentary behavior on cognitive health in older adults. JAPA, 13:294-313.